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What is 'information'?

● Logic/Philosophy/Semantics
– the 'world' contains a number of entities and relations

– rational perceiver: incomplete knowledge

– 'information' is any message which reduces our 
uncertainty about the 'world'



  

Structure of the talk

● Introduction [done!]
● History
● Foundation: Entropy
● Extensions: Conditional entropy, cross entropy
● Applications



  

History



  

Post-WWII

● WWII dramatically 
illustrated the need 
for (secured) long-
distance 
communication

● two problems:
– cost

– noise



  

Noisy channel model



  

Codes

● A 'code' is a set of strings over an alphabet 
● Each such string is called a 'message'

● Typically, the alphabet is binary:  = {0, 1}



  



  

Morse Code



  

Properties of a good code

● Unambiguous
– every distinct meaning gets a distinct string

– possible to tell when a string ends (and the next begins)

● Noise-tolerant
– e.g. if one bit is flipped, the intended message is still the 

'closest' message

● Efficient
– uses least number of symbols to communicate 

messages



  

Foundation:
Entropy



  

What makes a code efficient?

● Assumptions and notation:
– Messages: n distinct message types, each 

message i occurs with probability pi

– Symbols: b distinct symbols in alphabet , each 
equally costly to transmit

● Basic insight:
– messages with higher probability should get shorter 

strings



  

Example

● Los Angeles weather

– outcome 1: p1 = 335/365

● 23 C, mostly sunny, no earthquake

– outcome 2: p2 = 20/365

● 23 C, mostly sunny, earthquake

– outcome 3: p2 = 9/365

● 23 C, 15 minutes rain, no earthquake

– outcome 2: p2 = 1/365

● 23 C, 15 minutes rain, earthquake



  

Cost of communicating the weather

● Code 1
– first position: 1 = 23 C

– second position: 1 = rain

– third position: 1 = quake

● Average cost over year:
– 3 bits/day

– (every day takes exactly 
3 bits)

● Code 2

– [no message]: o1

– 0: o2

– 1: o3

– 01: 04

● Average cost over year:
– (335*0 + 20*1 + 9*1 + 

1*2)/365 = 0.08 bits/day



  

N outcomes

● Suppose a binary alphabet
● Suppose n distinct, equiprobable outcomes
● E.g. suppose n = 8

– at least one string must have length 3 (because 20 + 21 + 22 
= 7 distinct outcomes)

– in fact, to reliably know when a message ends, the average 
length must be at least 3 (since 23 = 8)

● The average message length must be at least log2 n

● If alphabet has b symbols, logb n



  

Formalizing the intuition

● Define surprisal of an event as follows:

!(oi) = logb pi

– where b is the number of symbols in the alphabet

● Intuition: Efficient code will assign shorter 
codes to more frequent messages

● Formalization: If message has probability pi, 
efficient code will assign a string of length 
logb pi



  

Example: Fair coin

● Fair coin:

– heads p1 = 1/2

– tails p2 = 1/2

● Assume binary alphabet

– !(heads) = log2 1/2 = log2 2-1 = (-1) = 1

– !(tails) = ... = 1

● Each outcome has a surprisal of 1 bit



  

Entropy, or Uncertainty

● Formally, the entropy (or uncertainty) associated with 
a random variable is the expected surprisal.

● A discrete, idendepently-and-identically-distributed 
(i.i.d) RV can be defined as a triple (X, , Pr) where 

 is the event space, Pr is a probability distribution 

over , and X is the current/next event

H[X] = E[!(X)] = [i] pi  !(i)

                      = [i]  pilogb pi



  

Example

● Fair coin

– heads pH = 1/2 !(H) = 1

– tails pT = 1/2 !(T) = 1

● Uncertainty:

– H[X] = {H,T} plog2 p = (1/2log2 1/2 + 1/2log2 

1/2) = (1/2-1 + 1/2-1) = (-1/2 + -1/2) = (-1) = 1

● The uncertainty of a fair coin is one bit.
– The average length of binary strings needed to 

communicate the outcome of a fair coin flip is 1.



  

Summary

● 'Information' is formalized as the average 
number of symbols needed to communicate the 
outcome of a discrete, i.i.d. random variable.

● Founded on the philosophical notion of 
'reducing uncertainty about the state of the 
world'.

● The surprisal of an event is the negative log of 
its probability (with base b, often 2 for a binary 
code).

● Entropy/Uncertainty is the expected surprisal.



  

Implementation
# usage: python unigram_entropy.py [corpus_filename]

import sys, codecs, math
input_filename = sys.argv[1]

# read in word frequencies
def read_word_frequencies_to_dic(filename, enc='utf8'):
        word_frequency_dic = {}
        fin = codecs.open(input_filename, encoding=enc)
        for line in fin:
                for word in line.split():
                        word_frequency_dic[word] = word_frequency_dic.get(word,0) + 1
        return(word_frequency_dic)

word_frequencies = read_word_frequencies_to_dic(input_filename)

# calculate entropy
def calc_entropy_from_frequencies(freq_dic):
        H = 0.0
        total_freq = float(sum(freq_dic.values()))
        for freq in freq_dic.values():
                prob = freq/total_freq
                H -= prob * math.log(prob, 2)
        return(H)

print calc_entropy_from_frequencies(word_frequencies)



  



  

Conclusion

● Entropy gives us a precise way to measure the 
amount of uncertainty in a process

● We do this by treating the process as a 
discrete, i.i.d. random variable.

● The uncertainty is the average length of a 
(binary) code needed to communicate the 
outcome of the RV on a trial.

● Entropy provides a way to measure the 
information content of an RV. 



  

Extensions:
Conditional entropy, KL divergence, etc..



  

Practicality?

● Shannon's work on coding theory was of 
enormous practical relevance in designing 
electronic communications systems.

● It provided a principled way to estimate the 
information rate of a noisy channel, as well as a 
way to construct the most efficient code, 
guaranteeing that the theoretically maximum 
efficiency could almost be achieved.

● But how is this of use to scientists, rather than 
engineers?



  

Measuring relationships between 
two RVs

● The definition of entropy can be readily 
extended to multi-variate RVs.

● This is of enormous scientific value in 
quantifying the informativity of one RV for 
another.

● For example, one RV might represent an 
acoustic cue like VOT, and the other might 
represent a phonological parse.

● Or, one RV might represent the theoretically 
predicted distribution, and another might 
represent the empirically observed dist'n.



  

Entropy of two RVs

● Let (X, X, PrX) and (Y, Y, PrY) be two RVs. Then 
the joint entropy is defined:

 H[X,Y] = E[!(X,Y)]

 = ([x],[y])[X][Y] p([x],[y])  !([x][y])

 = [X][Y]  p([x],[y])logb p([x],[y])



  

Example: Two fair coins

● Fair red coin (X): Fair blue coin (Y):
– Pr(head) = 1/2 Pr(head) = 1/2

– Pr(tail) = 1/2 Pr(tail) = 1/2
● (assume independence)

● Joint entropy

H[X,Y] = (pHHlog2 pHH + pHTlog2 pHT + pTHlog2 
pTH + pTTlog2 pTT) = 4(1/4log2 1/4) = 41/4 
log2 2-2 = (-2) = 2



  

Joint entropy

● In the previous example, H[X,Y] = 2 = H[X]+H[Y]
● More generally,

– H[X,Y]  H[X] + H[Y] (triangle inequality)

– H[X,Y] = H[X] + H[Y] if and only if X and Y are 
statistically independent

● The uncertainty in 2 fair coins is simply 2 times the 
uncertainty in a single fair coin



  

Joint entropy with non-independence

● However, when two RVs are not independent, 
the joint entropy is less than the sum

● Let X be the RV associated with flipping a coin, 
and let Y be the RV associated with the image 
of the same coin in a mirror.

H[X,Y] = (pHHlog2 pHH + pHTlog2 pHT + pTHlog2 
pTH + pTTlog2 pTT) = (2*1/2log2 1/2 + 2*0log2 0) 
= (-1) = 1

head tail

head 1/2 0

tail 0 1/2



  

Joint entropy with non-independence

● In the preceding example, the outcome of one 
coin flip completely determines the outcome of 
the other.

● Thus, the 'real' amount of information in both 
coin flips is equal to 1 bit -- the uncertainty in a 
single coin flip.

● When two RVs are completely independent, the 
joint entropy is just their sum. When they are 
completely dependent, the joint entropy is equal 
to the entropy of just one. What about...



  

Conditional Entropy

● The most normal case is that two RVs are not 
independent, but also not co-determined. In this 
case, we may ask, how much information does 
one variable contribute to the other?

● The conditional entropy H[Y | X] is the average 
amount of uncertainty remaining in Y when the 
value of X is known:

 H[Y | X] = H[X, Y]  H[X]



  

Mutual Information

● The mutual information is a (symmetric) 
measure of the dependence between two RVs:

 I(X; Y) = H[X] + H[Y]  H[X,Y]



  

A picture is worth...            10,082.9 bits

H[X | Y]

H[Y | X]

I[X; Y]

H[X]

H[Y]

H[X, Y]



  

KL Divergence

● Often in science we have a theoretically 
predicted probability distribution p, and an 
empirically observed distribution q
– (E.g. a logistic regression of some data)

● The KL divergence measures how many bits 
are wasted by using an optimal code for q when 
the messages are actually drawn from p

KL(p || q) = [i] pi  logb (pi/qi)

● Model-fitting is normally equivalent to 
minimizing KL divergence



  

Applications



  

Application 1

Morphological processing in
Serbian feminine nouns and

Dutch derivational morphology



  

Morphological processing

● Serbian feminine (Kostić, 1991, et seq.)
– trav-a nom.sg  + gen.pl

– trav-e gen.sg  + nom.pl  + acc.pl

– trav-i dat.sg  + loc.sg

– trav-u acc.sg

– trav-om instr.sg

– trav-ama dat.pl  + instr.pl  + loc.pl



  

Kostić: the problem

● The problem that a listener needs to solve is:
– given a lexeme, identify the meaning

– in Serbian, a lexeme consists of the root, followed 
by an inflectional exponent



  

Kostić: the solution

● For a stem L (e.g. trav), let
– m index over inflectional exponents

● so that Lm represents a lexeme (e.g. trav-a)

– Fm = frequency of Lm

– Rm = number of inflectional property sets for which Lm is 
the exponent (e.g. trav-a: 2 because this is both the 
nom.sg and gen.pl)

– pm = Fm/Rm

– P = m pm 

– !(m) = log2 (pm/P)



  

(Comments on Kostić)

● Confusing: the pm values are almost equivalent to 
treating the paradigm as a joint RV, with “exponent 
(e.g. -a)” and “inflectional property set (e.g. 
nom.sg)” as the dimensions, and simply assuming 
equal probability for all IPS's

● Confusing: “accusative case in Serbian 
predominantly takes an object role but it can also 
denote time, place, purpose, cause, etc..”
– so, does 'meaning' mean IPS, or IPS-semantics pair??



  

Kostić: results

● Kostić reports that the proposed surprisal 
measure accounts for over 90% of the within-
paradigm variance in lexical decision reaction 
times (LDRTs)

● Moscoso del Prado Martin et al. (2004) report 
an enriched variant of Kostić's measure which 
handles both inflectional and derivational 
morphology

● The 'information residue' they propose 
outperforms a combination of simpler measures 
in predicting LDRTs for Dutch



  

Application 2

The evolution and organization
of morphological paradigms



  

The problem

● Ackerman, Mahlouf, Blevins and colleagues  
are interested in the relation between 
enumerative complexity and the cell-filling 
problem

● enumerative complexity -- any measure of the 
richness of an inflectional system

● cell-filling problem -- how difficult is it to predict 
the exponent for an arbitrary cell in the 
paradigm, given the form of another arbitrary 
cell?



  

Examples

● Greek

  singular    plural
Class nom gen acc voc nom gen acc voc
1 -os -u -on -e -i -on -us -i
2 -s - - - -es -on -es -es
3 - -s - - -es -on -es -es
4 - -s - - -is -on -is -is
5 -o -u -o -o -a -on -a -a
6 - -u - -o -a -on -a -a
7 -os -us -os -os -i -on -i -i
8 - -os - -o -a -on -a -a



  

Enumerative complexity

● Greek has 8 declension classes
● For each class, there are a variety of exponents
● For each inflectional property set, there are a 

variety of exponents
● During the course of language acquisition, a 

child must learn all of these to produce the 
language properly

● Ackerman & Mahlouf discuss the extraordinary 
case of Chiquitlan Mazatec, which has 109 
nominal declension classes!



  

The Cell-Filling Problem

● Informally: How hard is it to do the wug test?
● More formal: On average, how much uncertainty is 

there as to the form of an arbitrary cell i, given the 
form of a different arbitrary cell j?

● (For example: you learned a new verb google from 
the 1st-person singular nonpast; now you want to 
use the same verb stem but in the 3rd-person plural 
past. How many options are there, and how 
confident are you in them?)



  

Ackerman & Mahlouf (2013)

● The Low Entropy Conjecture
– “enumerative complexity is effectively unrestricted, as long 

as the average conditional entropy [of one cell given 
another] is low” (p. 436)

● a priori argument: cell-filling problem is what matters, 
not enumerative complexity

● typological study: enumerative complexity varies 
enormously across languages, but average conditional 
entropy of cells is never much more than 1 bit

● simulation: shuffled variant of Mazatec without 
morphological implicational relationships exhibits far 
higher average conditional entropy of cells



  

Application 3

The influence of orthography
on the adaptation of English
vowels in Korean loanwords



  

The adaptation of English vowels

● Problem: phonetic and phonological structures do 
not match

● Adaptation is usually to the closest phonetic match
● E.g. English has two high front vowels (c.f. tin, 

teen), both adapted as Korean high front vowel
● Stress has pervasive effects in English phonology, 

including vowel reduction
● Korean does not have an analogue of unstressed 

vowels; adaptation is quite variable



  

Orthographic influence?

English Source SR Loan SR Hangeul

academy [ək ædʰ əmi] [ak adʰ ɛmi] 아카데미

acropolis [ək apʰɹ ʰəl s]ɪ [ak opʰɨɾ ʰol is ]ː ɨ 아크로폴리스

aluminum [əlum nɪ əm] [al uminjː um] 알루미늄

ballerina [pælə inɹ ə] [palːɛ inɾ a] 발레리나



  

How to measure the effect?

● Information theory to the rescue!
● Treat all the relevant vowels as an RV:

– P: the phonological identity of the English vowel
● e.g. [ə] 

– O: the orthographic identity of the English vowel
● e.g. <a>

– K: the adapted Korean vowel grapheme
● e.g. 아



  

source O  a   ca    de my

source P [   k æ  d  mi]ə əʰ

loan SR [a  k a   d   mi]ʰ ɛ

loan K 아   카    데   미

P O K
1.  ə a 아

2. æ a 아

3. ə e 에

4. i y 이



  

source O  a   ca    de my

source P [   k æ  d  mi]ə əʰ

loan SR [a  k a   d   mi]ʰ ɛ

loan K 아   카    데   미

P O K
1.  ə a 아

2. æ a 아

3. ə e 에

4. i y 이



  

source O  a   ca    de my

source P [   k æ  d  mi]ə əʰ

loan SR [a  k a   d   mi]ʰ ɛ

loan K 아   카    데   미

P O K
1.  ə a 아

2. æ a 아

3. ə e 에

4. i y 이

Now (P, O, K) is 
a joint random 
variable.

We can use 
conditional 
entropy to 
measure the
influence of 
orthography.



  

Logic

● H[K | P]
– the amount of uncertainty that remains in the Korean 

vowel adaptation, given knowledge of the phonetic 
identity of the English source vowel

● H[K | P,O]
– the amount of uncertainty that remains in the Korean 

vowel adaptation, given knowledge of both the English 
spelling and vowel identity

● orthographic information gain: H[K | P]H[K | P,O]

– cannot just measure H[K | O] because P,O correlated



  

Results

stress H[K | P] H[K | P,O] O-gain chance

primary 1.08 0.69 0.39 0.35.03

none 1.71 0.70 1.01 0.30.04

(NB Chance was measured by a scrambling 
operation, in which the associations between O and 
P, K were scrambled, guaranteeing that H[K | P,O] 
cannot yield 'true' improvement over H[K | P]. Owing 
to finite sampling effects, the statistic still comes out 
positive -- we take that as the baseline/chance level.)



  

Interpretation

● The orthographic information gain is defined as the 
extra information that English spelling must contribute 
to Korean vowel adaptation, beyond the English vowel 
identity.

● Daland & Oh (under revision) show that this quantity is 
positive for all stress levels.
– but it is greatest in both absolute and relative magnitude for 

unstressed vowels

– the corresponding value of phonological information gain 
shows the opposite pattern

● Phonetics matters more for stressed vowel adaptation, 
orthography matters more for unstressed adaptation



  

Summary and Conclusions



  

What is Information Theory?

● A statistically rigorous formalization of the intuition:
● Information is anything that reduces our 

uncertainty about the state of the world. The 
amount of information is measured by the 
reduction in uncertainty.

● Anytime a phenomenon can be characterized by a 
(set of) random variable(s), information theory is a 
potential means for analysis.



  

What is information good for?

● In scientific applications, information theory is most 
useful for characterizing the relationship between 
two or more RVs.
– morphological processing: conditional entropy of an 

inflectional exponent predicts lexical decision RT

– evolutionary morphology: average conditional entropy of 
one paradigm cell given another ('cell-filling problem') 
constrains morphological system, not absolute entropy 
of the paradigm ('enumerative complexity')

– loanword adaptation: show that the association between 
English vowel orthography and Korean vowel adaptation 
is higher than predicted by chance/vowel identity alone



  

Thank you!
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